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PREFACE

This bulletin deals only with the steady-state or static analysis

of cable mooring systems and represents a. portion of a much broader

investigation which includes dynamic effects.

The complete analytical study,  Dominguez 197 l! extends this

stati = analysis technique to dynamic analysis using matrix methods.

This makes it possible to obtain an eigenvalue solution. In reduced

matrix form, the damped equations of motion are uncoupled by means

of a .'inear transformation from the physical to a complex coordinate

system, permitting evaluation of either characteristic or forced

moti>n of cable systems.
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1. INTRODUCTION

1, 1  general Introduction

The world today is faced with the growing problem of meeting

current and projected needs of an expanding world population. As a

resul, attention is being focused upon the sea as a means of ful i!! ing

requirements in the future. New and imaginative effort,coupled,vien

incre xsed scientific knowledge and technological capability, will be

mandatory for intelligent and efficient utilization of the unfathomed

resources of the ocean.

Traditionally, oceanographic exploration has followed a pa tern

of gathering data from ships in either single or cooperative ventur i.. >.

Measurements taken at scattered geographic positions over long peri-

ods of time  often on the order of years! is costly and often an inade-

quate means for accumulating information necessary to the sf ''d'

time c'ependent transport and circulational processes. F'urther explor-

ation ind development of marine resources will necessitate the ccn-

struction of complex structural systems in deep water. C rue.ai t i

su t development is the need to ac,.ura.ei y predict w~v~ co~i J«i,>i:-

in advance of their ncc ur re~}ct..

:Regional or global systems of et;-.elegies:a! ly di ~p~r~~:~ -<- »:it~.



sensing buoy: =ould provide a means for meeting these needs. Such

system: > would provide a capability for monitoring sea state and lower

atmospheric conditions. By accumulating data the y would provide

information necessary for better understanding the basic phenomena

involvirg the generation of wind waves, thereby leading to improved

and reliable wave forecasting.

O=eanographical measurement from fixed positions has long beer

desirable, but to da,te only limitedly attainable. A major obstacle to

the placement of such installations has been their unreliability and

short li e. The ocean, and in particular the interfacial region, pre-

sents a harsh physical and chemical environment. Past inadequacies

are attributable to an insufficient backlog of both knowledge and exper.

ence in this environment, in relation to the behavior of materials,

instruments and structural systems.

A long history of unsuccessful mooring attempts and the recent

profusic n of basic buoys and mooring schemes attests to the interest

and need to develop this capacity. Causes traceable to mooring

failures are diverse, ranging from component overstress to shark

:«e and corrosion. Structural failures resulting from inadequate

design. cz!z be ascribed to a present inability to correctly predict the

exact nature and extent of the forces which a mooring system will be

required to withstand. Such forces are the result of complex static

and dynamic interaction of both buoys and their moorings with lower



atmospheric winds, ocean waves and currents.

'I'he ability to analyze a moored object and its cable mooring both

statically and dynamically is essential for reliable structural and

hydrodynamic design. Attempting to deal analytically with mooring

probleirrs can be discouraging when one reflects on the long years

and substantial effort directed at evaluating hydro- and aerodynamic

forces on rigid bodies, subject to steady flow. Analysis has yet to

reach 1;he point of exclusion of experimentation or reliance on empiri-

cally derived relations. Mooring problems involve fluid motion influ-

enced 'iy waves which have all the complexities of being non-uniform,

non- st.ady, and turbulent. Detailed kinematic description of the f}ow

field, involving both pressure and shear distribution on the buoy and

cables is presently not possible. Flow conditions about a cable influ-

enced by wave motion are complicated by the fact that the cable'8

trailing edge during one half cycle becomes its leading edge during

the ne:<t, as the cable is accelerated back into its wake. The com-

pliant nature of the cable further complicates the picture as it con-

tributes to the relative motion by responding to variation in pressure

along its length.

I'he static and dynamic behavior of flexible cables is also corn-

plex and not totally understood. Exact attainment of the static config-

uration under all but a few specific loadings is currently not possible.

A complete solution of the mooring behavior problem must



account ..'or fluid structure interaction resulting from both waves and

subsurface currents; structural snd fluid energy dissipation, and elas-

tic deformation c f the systems' components must also be considered.

In the case of some commonly used cable materials this effect can be

appreciable and add still greater difficulty to the analysis, due to non-

linear stress-strain relationships  ~Vilson, 1967!.

Approaches to the analysis of mooring systems have taken sev-

eral dire ctions. Attempts at analysing the behavior of such systems

by use o. hydraulic models have been widely conducted. Experimental

studies of large scale systems are, however, not without their diffi-

culties. Facilities are normally limited in depth, necessitating the

use of either small or partial models. Results obtained from such

models tend to be of limited value. Cables which are on the order of

several inches or less, in depths often approaching several thousand

feet, present significant scaling difficulties. There appears to be a

lack of comprehensive studies aimed at establishing model criteria

requi red to prope rly evaluate the dynamical behavior of cable systems

in fluids, Analytical attempts have been based on formulating equa-

tions of motion for the system and then attempting to arrive at solu-

tion under simplifying assumptions by various mathematical techniques,

Other approaches have been based on the development of simplified

system inodels and the adoption of both digital and analog computers.

Tl.e mooring behavior problem by its nature traverse s many



areas ot' endeavor and engineering application. An extensive publica-

tion devoted entirely to reviewing the current status of analyzing cable

systems under hydrodynamic loading has been written  Parsons and

Casare!la, 1969! to which the reader is referred for a comprehensive

overvie~. Discussion of the results of other investigators will be

undertaken in conjunction with either their usage or applicability to

the mat rial presented in subsequent sections of this study.

l. 2. Back round and Sco e of Investi ation

Tne use of large TOTEM spar buoys such as that shown in

Figure 1. 2-1 for data acquisition by Oregon State University's Depart-

ment of Oceanography, necessitated the development of a reliable

mooring technique capable of restraining the buoy while minimizing

the vertical mooring reaction, as these buoys are limited in reserve

buoy anc y.

Iz view of this, a study was conducted  Dominguez, et al., 1969!

to deve1op a mooring for installation of a TOTEM buoy in 1800 feet of

water off the coast of Oregon. Ae a. result the two-point mooring

illustrated in Figure l. 3-1 was developed and later deployed. Its

design divas based on a necessarily limited amount of analytical work

in conjunction with s. structural analog to evaluate static behavior.

Reliance was placed on a 1/100 scale model of the buoy and its rnoor-

ing to evaluate the systems' response to directional waves. Static and
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dynamic evaluation by these methods were limited with respect to

depth. The static analysis was limited to two dimensions, neglect-

ing hyd! odynamic forces on the subsurface mooring components.

In view of the several drawbacks presented by such approaches

to long;erm studies, it was felt that future development of such

mooring systems required a capability of easily evaluating their

behavior under a minimum number of restricting limitations. Hence

the imp tus for this study was provided.

The objectives of this study focus upon the development and

application of numerical methods for statically analyzing discrete

parameter represented moorings and cable systems, under general-

ized as! umed known loadings.

1. 3. Two-Point Moorin S stem

The two-point mooring system shown in Figure l. 3- I consists

of a set of anchors and a pair of subsurface spring buoys which

provide support to a set of anchor and buoy connecting cables. When

subject to external forces arising from either wind or current action

on the surface buoy or subsurface components, a change in the rnoor-

ing georietry must occur. The mooring can be thought of as being

in a state of quasi-equilibrium dependent on cable generated forces

to maintain its position. Under the influence of any external force the
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mooring must readjust and seek out a new equilibrium position com-

patible ivith the applied external forces and restraints on the system.
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Z. STATIC BEHAVIOR OF CABLE SYSTEMS

Z. 1. Statics of a Continuous Sus ended Gable

Historically, the mathematical theory of flexible cables and

chains has evolved under the assumption of total flexibility of the

member. This assumption results in significant analytical simplifi-

cation, as it implies that internal bending moments cannot be devel-

oped. Consequently internal shear forces cannot exist. Forces

which a cable is then capable of transmitting are tensile forces only,

and must be directed tangent to the cable at every point along its

length.

The tangency requirement will. be demonstrated, and equations

developed, by considering the equilibrium of an elemental length of

cable, following that given by Pestel and Thomson �969!.

Consideration of the element indicated in Figure Z. 1-1 shows

it to be acted upon by an external distributed load w s! whose re-

sultant is wQ s and the internal cable reactions at either end of the

element T and T + A T. Equilibrium of the element requires that

two conditions must be identically satisfied. The first may be ex-

pressec as



EOUILIBRI UM OF A CABLE E I f MENT,
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T+ T+hT! +wha = 0

which rec.uces to

hT
� + w = 0
b s

�, 1-1!

Letting d. s 0, the following differential equation results,

dT
+ w = 0

ds
 Z. 1-Z!

Application is now made of the second equilibrium condition which

may be expressed as

KM = 0

where M = the moment produced by a force F about any arbitrary

point 0, On substitution,

r X-T+  r+hr! X T+BT! + r Xwhs = 0
W

Expansion and division of this equation by as gives,

hT h,r � hr
r X � + � XT+ XhT+ r Xw =0

b,s b,s hs W
�. 1-3!

Now if 6s 0, then dT ~ 0 and r ~ r, which gives
w

dT � dr
rX  +w!+ XT = 0

ds ds
 Z. 1-4!

The bracketed portion of the left hand term is zero by Kq.  Z. 1-2!;

hence the following differential equation is obtained

where F = Force, extexnal to the element. Applying this condition
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dr
x T = 0

ds
�. 1-5!

«Ir
Since � � is everywhere tangent to the cable then the direction of T

«Is

Equations  Z. 1-2! and �. 1-5! are the basic di1ferential equa-

tions d«sc ribing the inte mal force distribution and deflection

geometry of a suspended cable subject to a distributed loading.

Z. 2. Develo ment of the E uations for Two-Dimensional

P..nal sis of a Sus ended Cable

Use will now be made of +s. �. 1-2! and �. 1-5! to develop the

basic equations for static analysis of suspended cable members under

the influence of a distributed loading. If the distributed load is re-

stricte«I to lying in a vertical plane, as shown in Figure 2. Z-1, then

w s! =- w s!j �. 2-1!

where i, j, k are unit vectors in the x, y, z directions of a right

hand cable coordinate system.

Fig~re 2,2-I GABLE ACTED UPON BY A VERTICAL
DISTRIBUTED LOADING

must b«also,in order to satisfy Eq.  Z. 1-5!.

I
I

I
I

/
/

r
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The internal tension force at any point s is thus

T = T i+T i
X

�. 2-Z!

Substitutir..g Eq. �. 2-?! into Eq. �. 1-2! gives

dT dT

i +~j +w s!j = 0

Separating terms, one obtains

dT

ds
0 �. 2-3!

dT

y: ~+ w s! = 0
ds

�. 2-4!

Eq. �. Z-3! implies that everywhere in the cable the horizontal

component of the tension force is constant. Integrating Eq.  Z.2-4!

will give

T = � w s!ds + A,
1

 Z. 2-5!

r = xi+yj

and r is substituted into the second of the basic differential cable

equations, then Eq. �. l-5! gives

If the position vector r from the origin of coordinates to any point,

located on the cable, at a distance s is expressed in rectangular

Cartesian coordinates as
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dx  < t ~g! X  T i + T ~! = 0

� T k - ~T k = 0dx d

ds y � ds x�

~d
y xdx

�. 2-6!

Substitution of this last expression, Eq. �. Z-6! into Eq.  Z. 2-5! is

now mad», obtaining the following expression for the cable slope at

any point,

dy 1

dx T
w s!ds + A

1
�. 2-7!

 Z. 2-8!

Using this, Eq.  Z. 2-7! may now be written in the following form

ds

dx

which upon separation of the variables and integration gives

From Figure Z. Z-2 the following geometrical relationship can be seen

to exist:





18

T = - w x!dx+ B
1

�. 2-15!

The tensicn force tangency requirement given by Eq.  Z. 2-6! may now

be used with Eq. �. 2-15! to obtain the following expression for the

slope of the cable

w x! dx + B
d 1

dx T 1
x

�. 2-16!

The deflection curve is then described by

y x! = - � [ w x!dx ]dx + 3 x + 8
1

T 1 2
�. Z-].7!

U w x! = iv = constant, then Eq. �. 2-17! is easily integrated, giving

the parabolic form of the cable deflection equation.

2
wx

y x! =- � +B x+B
ZT 1 2

�. 2-18!

tion is that at the lowest point in the cable = 0 which can be ap-
dx

plied through use of Eq. �. 2-16!.

The integration constants in the above equations are evaluated by use

of known boundary values, obtained from the physical constraints

imposed oa the problem, such as, specification of cable support

locations, maximum deflection, or cable length. An important condi-
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Cate~na r

As pointed out, Eq. �. 2-9! may be utilized to obtain an expres-

sion describing the cable deflection curve. Consideration is now given

to the important case where w s! = w = constant which corresponds

to a uniform cable supporting its own weight. This relation may be

derived by employing a coordinate system located at the end of the

cable, as done by O' Brien and Francis �964!. However, in order to

facilitate development and ob ta in le s s c umbe r some re-

sults, a shift in coordinate system will be introduced, locating the

new axes at the 1owest point of the cable, as shown in Figure 2 2-2.

dv
At this point, the cable slope ~ = 0, s = 0, and   = x - x = 0.

dx

Application of the integrated form of Eq,  Z. 2-7! gives A = 0. Eq.1

 Z. Z-9! then gi's

which upon integration is

T
x . -1 ws

sinh � + A
W T 2

X

 Z 2-ZO!

At   =0, 5=0, s =0, the constant A =O. Hence

ws, w+
sinh

X X

�. 2- Zl !

Integrating Eq.  Z. Z-7! with A = 0, and then substituting Kq.  Z. 2- Zl!
1



20

into the r suit, give 8

sinh +
dx T

x

�. 2-22!

T
X

Making the substitution a = and then integrating the above equa-
w

tion, one obtains

y = -a cosh~+A
a 3

�. 2-23!

If the values   = 0 and y = h at the transformed coordinate origin

are substituted into the above equation then A = h + a, Substituting
3

this value of A into Eq. �. 2-23! gives the catenary form of the

cable deflection expression

T w x-x !
y - h = � [coshx

w T
- I]

X

�. 2-24!

Since this equation contains three unknown values, h, x, and T
X

additional relations are needed in order to make use of it. These

x 2x -x
t . E t

h = 2a sinh sinh
2a 2a

�. 2 25!

To obtain an expression for the length of the catenary L in terms of

the cable span, one can integrate the following expression using Eq.

�. 2-22! for
d

dx

can be obtained by evaluating Eq. �. 2-24! twice, at x = 0 and at

x = x = x + x and then subtracting the results leading to the follow-
t 5 r

ing expression for h, the vertical distance between cable supports.
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t

=S, �. 2- 26!dx

which after integration and the use of a hyperbolic identity gives

X Zx x
t t

L = Za sinh � cesh
2a Za

�, 2 27!

IE both Eq. �, 2-25! and Eq, �. 2-27! are squared and then subtracted

the following transcendental equation for the catenary parameter a

is obtained.

1 2 2
sinh = � L - h

2a 2a
�. 2 28!

M order to obtain equations which can be used easily to obtain the co-

ordinates of the lowest position of the catenary in terms of the nor-

mally known parameters L, x and h, Eq. � 2-Z5! and Eq. �: 2-
t

27! may be combined to give

-1 h
x = a.tanh

L 2
�. 2-Z9!

ating the ..esult at x = 0, y = 0, thus

X

h = a [cosh -1]
a

�. 2- ~0!

An expression for the tension at any point in the cable may now be

obtained ty combining Eqs. �.2-2! and �. 2-6! with Eq. �. 2-22!

A relation for the vertical coordinate h may now be obtained by sub-

stituting Kq.  Z. 2- Z8! and Eq.  Z. 2-29! into Eq. �.?-M! and evalu-



dv
which describes the cable slope ~ to give

dx

3c x 2

T = aw[1+ sinh ! ] �. 2 31!

2; 3. Com uter Pro ram for Solution of Catenar E uations

Solving the equations governing the catenary geometry and inter-

nal fore: distribution necessitates the tedious solution of a rather

complex set of hyperbolic equations, including a transcendental equa-

tion defining the catensry parameter. In view of this, a computer

prograrri was developed which provides a complete static solution by

solving the equations presented in Section Z. 2 based on the location

of cable support positions, cable length and weight. This program,

as were all programs used in this study, was written in Fortran IV

for use with the Oregon State CDC 3300 computer facility, using the

OS3 version 2. 1 time sharing system.

1
sinh

2a 2a

Obtaining the root or the value of the catenary parameter a which

satisfies this equation is accomplished by use of the recursion rela-

tion

The program incorporates a Newton-Raphson method for solving

the transcendental equation, Eq. �. 2.28 ! which is fix'st x'earranged

by transposition to obtain the form F a! = 0.
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F a.!

i+1 i F' a !
r

�, 3-1!

where F' a,! denotes the derivative of F a! with respect to a and
i

evaluated at a = a..

Eq.  Z. 3-1! is u.sed to obtain successive approximations to the

value of u which will satisfy F a! = 0. Successive approximations
F a.!

r
of a root are carried out until the value of, is less than some

prescribed value e, at which point the root satisfying the catenary

paramete.." equation has been found. A flow chart illustrating the cal-

culation sequence is given in Figure Z. 3-1.

Subsequent figures relating to the catenary properties were

on h, x. and I. for the range of configurations of interest. As this
t

figure sh<>ws, the parameter has a wide range of values exhibiting

very larg = changes as the span to length ratio approaches its asyrnp-

totic lirni".. As a approaches infinity, so must the cable tension.

For deep catenaries with small positive span to sag ratios, the cate-

nary parameter assumes a much narrower range of variation.

It v as found that the Newton-Raphson criteria used for conver-

gence in obtaining a proved to be direct and rapid for the range of
X

t above approximately 0. 35. For lower range s initial values had
I.

to be sele cted with greater care. Where initial values of a, were

developed using this program. Presented in Figure Z. 3-Z is a dirnen-

sionless plot of the catenary parameter a illustrating its dependence
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Figure Z. 3- I  continued!
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within re isonable range of the correct value, convergence to e, equal

to or less than 0. 0001, normally took place within four or five iterations.

In c rder to lend added geometric meaning to the parameters

used in defining cable properties and configurations, Figure Z. 3- 3 is

presentec showing the catenary shapes as a function of the cable sup-
X X

t
port position h, span to length ratio � and the span to sag ratio a.= �,

L T'

Figure Z. 3-4 and Figure Z. 3-5 show the cable tension dependence on

catenary geometry and exemplify the non-linear nature of the static

t
cable anal.ysis problem. Variation of tension with increasing

L

corresponds to the effect produced by forcing the cable support posi-

tions apa! t.

Z. 4. Analysis of Cable Systems

Cables have been used as load supporting members in such

tradition-.l structures as suspension bridges, tramways, transmission

lines, etc.. for some tizne. In recent years the application of cables

to the construction of complex suspended roof systems has increased.

As a consequence, behavioral theory and techniques for analysis of

such structures have received a good deal of attenti.on and are well

documented  see Shore, 1969!. In the case of such structural appli-

cations aa these, support locations are known and a,re not a function of

the syste ~s' loading. Only small changes due to elastic deformation

and temp rature occur, which can be accounted for. Loading is
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general:.y such that analysis can be carried out in. a plane. For

cables having relatively flat deflection curves the simpler parabolic

form of the cable equations can be satisfactorily utilized, giving a

good apiroxirnation to the e~act case described by the catenary. In

this case cos g = 1, where p is the cable slope measured from

the horizontal  Figure 2. Z-Z!. When p .is small everywhere, a good

approximation of cable weight being distributed uniformly in the

horizontal direction, is obtained, For cable systems which are sub-

ject to more complex loading  combinations of concentrated loads;

discontinuous and non-uniformly distributed loads! deflection rela-

tions cannot in general be directly obtained by existing theory.

The equilibrium of all structures requires that the vector addi-

ti.on of all forces acting on it form a closed polygon. Analysis of

beams, arches, and trusses, either graphic or algebraic, can be

carried out on this basis. The procedure is well documented in books

dealing with structural analysis and mechanics such as Michaloe

and Wilson �965!, The polygon principle can be extended to cable

analysis when treated as a system acted upon by concentrated loads.

Approximate solution can be realized by use of the string poly-

gon method, approximating hanging cables by a series of frictionless

pin-conr~ected, rigid but weightless segments. Loads including

cable we ight are replaced by equivalent concentrated forces located

at the connecting node points. This results in a configuration which
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is statically determinate and requires no prior assumption as to its

geomet ri c shape.

Existing cable theory can be applied to mooring systems pro-

vided the support positions are known and hydrodynamic drag forces

ar'e either non-existent or negligible. The catenary equations would

then be applicable. However in the case of mooring applications, at

least one of the cable supports is partially free to move, making its

position a function of the systems' loading. In such a case the caten-

ary relations are not applicable. Hydrodynamic forces acting on the

cable c,ruse it to assume a configuration that is no longer a catenary

and in [,eneral does not lie in a plar.e. Consequently the geometric

configuration may be three-dimensional.

This situation is exemplified by the analytical problem con-

fronted in arriving at the static configuration of the two-point rnoor-

ing system, under a generalized loading, illustrated in Figure 2.4-1.

There are, as yet, no adequate analytical techniques for arriving at

exact solutions to such problems. Although solutions for particular

problerris have been developed, no general method of analysis is

available. Hanging cables are subject to large displacements and

the diff  rential equations describing their equilibrium are non-linear.

This ha,i excluded the application of methods based on linear super-

position used in structural mechanics for the analysis af complex

statical..y indeterminate structures.
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O' Brien and Francis �964! set forth a numerical method for

the two-dimensional analysis of cables by a process of successive

approximations. This approach treats cable elements between con-

centrated loads as piecewise continuous catenaries, by applying the

basic catenary relations to each segment of the cable between con-

centrated load points. Later O' Brien �967! extended this technique

to three -dimensional application and reportedly applied it to the de-

sign of <leep sea moorings. Apparently motivated by O' Brien, Skop

and O'H tra �969! formalized the string polygon technique and applied

it to three-dimensional cable arrays.

Z. 5. B-.sis of Numerical Solution Procedure

B+.sed on the concepts put forth in the original paper by Skop

and O'H ~ra, two numerical computer programs were developed to

attain static solution of the two-point mooring and single cable sys-

tems.

In orde r to make clear the principle upon which the nume rical

solution procedure is based, it will first be explained by application

to the simpler single cable.

Figure Z. 5-1 shows a uniform cable, of known length L, sus-

pended tetween supports a and b whose position is presumed

known. Jn the absence of externally applied loadings, the cable shape

would be described by the catenary relations previously developed.



w= w s! ds

w 

Figure 2 5-I OISCRETE PA RA M ETE R REPRESE N TAT ION

OF A CONTINUUM CABLE
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Use of these could be made to determine the rea,ctions A and B at

the supports.

Suppose the cable is now subject to a distributed but arbitrary

known loading w s!. Under this influence it deforms from its initial

shape a- b to some other unknown configuration a'-b', shown dotted.

Since ~  s! is assumed known, the magnitude of its resultant can be

determined by integrating the load along the cable length. As con-

stituted, there are more unknowns than available independent equa-

tions, rendering the cable statically indeterminate. Though the

ma'gnitu9e of the resultant of the distributed load is determinable, its

point of application is not, as a deflection relationship for the cable is

unavailable. Since the re are only three available equilibrium equa-

tions, other relations are needed to achieve a static solution. Knowl-

edge of:he deflected shape of the cable would remove a sufficient

number of unknowns to render the problem statically determinable.

fn order to surmount these difficulties, we approximate the

original distributed system by a discrete or luznped parameter one

 Figure Z. 5-1!, by dividing the cable into a stipulated number of seg-

ments such that the sum of their 1engths equals the original cable

length. The distributed load, including the cable weight acting on

each segment, is replaced by an equivalent concentrated node point

load. The unknown quantities are now: the magnitude of the reac-

tions A and B, their directions and the unknown positions of each
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of the node points.

It would appear that this new system has increased the number

of unknown quantities by virtue of each interior node point position

being unknown at the outset. %hat has been accomplished is the

replacement of an infinite number of unknown cable positions by a

finite number of node points, each of which is accompanied by an

independent set of equilibrium equations. In the discrete case, or

polygon formulation, the support reactions as well as their directions

are unknown.

Suppose for the rnornent that we free the cable at point b and

select the unknown reaction B equal to its correct value. A can

readily be calculated in terms of B by equating all external forces

acting cn the cable in the x and y directions to zero. Alternatively

we could begin at point b and progress from connection to connection

by considering the equilibrium of each individual segment. As the

weight «nd external loading are applied at the node points, each

cable segment is a two force member. Consequently, the resultant

of all forces external to each segment must be colinear, equal and

opposit». Application of this elementary principle of statics allows

for the =alculation of A in terms of B by successive calculation

of inter cal reactions at all intervening node points.

T.ais forms the basis upon which the numerical solution is

formulated, Since the value of the redundant reaction B is not



38 known, a rea.sonable value is assumed. Then, beginning at point b,
2 F '-- 0 and Z F = 0 are applied, evaluating in. succession the

X

internal cable reactions until point a is reached and A calculated

in terms of the presumed value B. At this stage all internal reac-

tions in terms of B and the external cable loading have been evalu-

ated. Use is now made of the colinear requirement of the segment

reactions to calculate the x, y position of each successive node

point, beginning at point a and progressing to b. If point b fails

to fall at the specified support location then the assumed value of B

is in e rror. Then a corrective procedure is instituted by the addi-

tion o. force AB to B in the direction from b' to b  Figure 2. S-2!

to improve upon the previous value. The procedure is repeated until

< once.-gence is achieved and point b falls at the prescribed < able

suppo -t lo< ation. 'A hen this oc~ urs, a. unique solution for the static

«quilil>riurn configuration is achieved.

URE ERROR

ANCE

CA LCULAT E D

POSITION

Figure 25-2 INTERMEDIATE CABLE POSITION DURING

NUMERICAL EQUILIBRIUM CALCULATION
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'The method will be mathematically formalized in the subsequent

section.

2. 6. Numerical Procedure and E uations for Staticall

Anal zin the Two-Point Moorin

fhe Cartesian coordinate system and notation adopted in this

section will correspond to Figure 2. 6-1. The coordinate origin is

th
placed at the left anchorage and denoted as the 0 node position.

The coordinate system will be oriented relative to the mooring such

th
that the right anchorage, defined as the m node position, lies on

or above the x coordinate axis.

I. e f t anchor node position x o!, y o!, z o!

x m!, y m!, z rn!R ight anchor node position

.th
Node point locations will be denoted as the i position beginning

at the left anchor and numbering consecutively to the right anchor

tk. ,th
or m ' station. The external force components acting at the i

node pc int v ill be denoted as

F  i!, F  i!, F  i!x ' y ' z

R  i!, R  i!, R  i!x ' y ' z

.th
The components of the resultant force at the i node are designated

to be
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.thThe length of the segment immediately preceding the i node will

be denoted as s i!, making the first segment in the cable system

.ths�!. The tension force in the i segment is T i!. The position

of each of the mooring node points are then denoted by the Cartesian

c oor di nate s

x i!, y i!, z i!

.thThe co:mponents of the resultant force at the i node are obtained

by use of the following equations

R  i! =F  i!+R  i+1!
X X 3C

R  i! =F  i! +R  i+1!  Z. 6-]!

R  i! =F  i!+R  i+ l!

force components are given by

R  i! =R  i!

�. 6-2!R  i! = R  i!
y

R  i! = R  i!
z z

.thThe tension in the i segment is determined using

2 2 2 2T i! = [ R  i!! + R  i!! + R  i!! ]  Z. 6-3!

Successive node point positioss are then calculated by the following

where i = 1, 2,, m- 1, At the last node point  i=m!, the resultant



r e la ti or..s

R  i!s i!
x

x i! = x i- 1! +
T i!

R  i!s i!
y i! = y i-1! +- �. 6-4!

R  i!s i!
z i! = z i-1! +

T i!

The two-point mooring in contrast to the cable has three re-

strainir.g boundary conditions, which the equilibrium configuration

must satisfy. These are the fixed left and right anchor positions,

and the vertical location of the surface buoy which must be consistent

with the displacement characteristics of the buoy, water depth, and

the downward reactions created by the mooring. However, there are

no rest:.-ictions placed on the buoy's horizontal or x-z position.

%here either a buoy or other type of floating object has a rela-

tively 1 urge displacernent, and therefore will undergo only minor

change!,, it is possible that the downward displacements  which are

small ~hen compared to the systems dimensions! can be safely

neglected in analyzing the mooring. However, where vertical dis-

placemi nt i.s significant., this must be accounted for in applying the

closure test at the end of each iteration.



Convergence of the iterative procedure is achieved by succes-

i.i~".ior ~. Co~r ction~ are proportional to error and are applied in

a direcl ion such that the cable configuration moves to satisfy the

restraints imposed on it by the anchor positions and surface buoy.

The closure error at the right anchor position is calculated by

2 2 2
E =  x - x rn!! + y - y rn!! + z � z m!!  Z. 6-5!

where z, y, z are the coordinates of the fixed right anchor.m' m' m

The surface buoy closure error is given by

Eb   D - d ! � y k!! 2
�. 6-6!

where c denotes the surface buoy index. Consequently the total

closure error can be defined to be

 Z. 6-7!E = E tE

This equation contains the sum of the squares of the closure error

distances, Corrective anchor reaction forces are obtained by use of

 x � x rn! !
6

x 7E m

~  y � y rn!!y WE m �. 6-8!

~  z - z m!!
z gE rn

sive application of corrective forces at the right anchor surface buoy
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The corrective force at the buoy position is given by

  D - d ! - y k!!
6

b E s

6 is a positive value which is initially chosen, then selectively re-

duced so that each successive iteration produces a succe ssively

smalle r closure error, until the value of E is less than some pre�

selected value K . An improved set of reaction values is then ob-

tained '>y adding the corrective values to the previous set of reactions.

Interval halving was selected for the systematic reduction of 6. The

procedure is flow charted in the next section. At each iteration the

value of the total error E is tested to see whether it is less than

that of the previous iteration. If it is, then a. successful iteration

has been performed and the current value of 6 is retained until E

is foun.3 to be larger than that of the preceding E. At this point in

the solution, the program neglects the current set of iteration values,

6 is reduced and the solution proceeds from the last stored iteration

set. A new set of values is then calculated, E is again tested and

e ithe r re tained or further reduce d accordingly.

I'igure 2. 6- 2 is presented to illustrate the three dimensional

conver ~ence of the procedure as the configuration progresses

towards its equilibrium position from intentionally selected, poor

initial values of both the reactions and convergence factor 6. Table

2. 6-1 f,ives the calculated reactions and closure values at selected

iterations.
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2. 7, Corn uter Pro ram for Static Moox xn ~ Res onse

9. flow chart showing the calculation procedure employed,

ba.sed «pon the equate ons presented in Section ?. 6 is presented in

Figure 2. 7- l. The subroutines called from the xnain program will

be briefly discussed with reference to their purpose and usage.

Subroutine DKADLD

This subx'outine, furnished with the weight and length of the

xnooring cables, spring buoy buoyancy and the stipulated number of

node pcints in each cable, breaks down the distributed loading into

an equivalent discrete system of vertical forces. Interior node

forces account for the weight of a full segxnen, where those at the

anchox' ends equal l, 5 that of an interior node to account for the total

cs.ble ~eight.

S zb r ou tine DISPLACE

Subroutine DISPLACE provides for vertical displacement of

the buoy or other object located at the surface termination point of

the mooring. This routine is written for a specific object geometry,

such that vertical mooring reactions on it can be correlated with con-

sequential changes in its displaceznent, The subroutine is fitted into

the basic iteration procedure for calculating the equilibrium position
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with the additional constraint that vertical displacement be compatible

with the vertical reaction on the object.

Su'>r o utine H Y DROLD

This subroutine calculates the hydrodynamic drag on all cable

elements produced by subsurface currents, The program is written

to accou»it for any number of horizontal velocity fields of arbitrary

magnitude, depth and direction. Hydrodynamic forces are evaluated

by mean»» of the drag equation applied to a cylindrical cable element.

More complex loading functions are possible and can be easily incor-

porated in the program if desired. Required inputs to the subpro-

graxr»s a» e the velocity field specification, the physical and hydro-

dynamic properties of each of the component cables of the xnooring.

Subsurfa =e drag on the spring buoys is accounted for through use of

s ubprog r am CHANGE.

Th» projected length of each of the cable elements, perpendicu-

lar to the velocity field v, is obtained by

�. 7- l!

which, w~en expanded gives



s i! v t s i! v
s  i! = [ s i! W s i! + s i! ! -   ! ]

x y z �. 7-2!

+y

s i !

s  i!
P.

s  i!

Figure 2. 7-2. Cable Elemeat Orieated ia e Velocity Field

.thThe tot «l hydrodynamic force Fd i! acting on the i cable element

is calculated by means of

Fd i! = z p C d s  i!~v~v �. 7-3!

p = mass density of the fluidwhe re

Cd = drag coefficient

d = cable diameter

Fd i! is reduced to component form by means of

Fd  i! = Fd i! cos g
X

Fd  i! = Fd i! sin P
z

  Z. 7-4!

As she wn in Figure 2, 7- 2 s  i! is the component length of s i! per-p

pendicular to the velocity field



The tot il component force is then subdivided and distributed equally

to each adjacent node.

Subroutine CHANGE

This subroutine allows for multiple calculation of several suc-

cessive mooring configurations with different Loadings. Zt also pro-

vides the means for changing one or more parameters of the problem.

This provides for improved economical solutions. For example,

in succ ssively changing the external forces applied to the system,

the pre pious reaction values etc. are retained and used as initial

guesses to the next problem. The program also provides the capa-

bility for changing the structural or hydrodynamic characteristics

of given elements of a mooring after the application of subroutine

DEADLD. This provides the means for altering the basic system to

a more intricate or totally new one.

2. 8. Evaluation of the Numerical Method

Although Skop and 0 Hara indicated that increased accuracy

would Le achieved with the usage of a larger number of cable seg-

ments, no indication as to the accuracy of the method was presented.

The qui stion of errors of unknown extent, due to the inexact treat-

ment o:.' the cable weight, was raised by O' Brien but left unanswered

relative to the string polygon formulation analysis procedure
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proposed by Michalos and Birnstiel  I96Z!.

In order to ascertain the accuracy to be expected from a dis-

crete parameter formulation and to provide guidance in selecting

the nurriber of cable segments necessary, two criteria were set up.

Program CABLE was developed for statically analyzing a

single cable, utilizing the same numerical method adopted for the

two-poiat mooring analysis. Solutions were obtained and compared

to those of the continuum case provided by program CATENARY.

Three cable geometries of equal length and weight but differing in

support positions were investigated.

t

L h tCase

. 80

0. 832.60

.40 2. 180

Solutions to each of the three cases were obtained with a vary-

values ar, the lower or left reaction are ne*rl.y exact for as few as

ing number of cable segments. In each case K was taken as 0. 01.

Compar:.son of the relative tension for each of the three cases as a

function of the number of segments is shown in Figure Z. 8-1. In

order to give added quantitative interpretation to these results, the

same data is presented in Figu.re Z. 8- 2 plotted as percent deviation

from the exact solution. It is of interest that in Case II the tension
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three segments, whereas in Case Ill the tension values at the leit

reaction are the most divergent of the cases considered. The right

reaction values of Case III also exhibit this same behavior but to a

lesser degree,

I:i order to view the combined effect that the number of seg-

ments:.n a connected array of cables has, a two-point mooring con-

figurat.on  Table 2. 9-1! was varied using an equal number of seg-

ments:.n each of the component cables, and then compared to itself.

A quas:.-exact solution might be considered as that case where vari-

ation iri the results is non-discernible. A minimum number of lZ

segments to a maximum of 400 were used. The effect of this varia-

tion on the cable tension at selected points and on the moorings'

reactions is shown in Figure 2. 8-3.

2. 9. F'greeter Investi ation

because infinite possibilities exist for component combinations

and hence mooring configurations, a systematic method of describing

a particular system is desirable. In discussing the mooring, all

configurations will be referenced to their static equilibrium position

in the sbsence of externally applied loads. To provide descriptive

aid, eh' following dimensionless parameters are introduced and.

illustr~.ted in Figure 2. 9-1. The aspect ratio is defined by
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The ra':io of the anchor line length to that of the buoy connecting cable

will be defined as

L
a

L

C

�. 9-2!

The co~~pliancy number, which is a quantifier of the yielding capacity

of the mooring has a minimum value of l, and is defined by

L + L
a c

�. 9-3!

The sp:".ead ratio defined a,s the horizontal distance between spring

buoy pcsitions divided by the anchor span, is

23C
t

5
X

m

�. 9-4!

In order to isolate and determine the relative effect that the

basic components of the two-point mooring play in its static behavior,

a parar~eter study based on the..independent variation of selected

components was undertaken. Use of the numerical computer pro-

gram was made to perform the necessary calculations.

Due to the infinite combination of components it was impractical

to investigate a very wide range of possible configurations. Conse-

quently a standard reference configuration similar to the deployed
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prototype system was adopted and a parametric study based on varia-

tion about this configuration was conducted. The reference configu�

ration .s given in Table 2. 9-1. The parameters selected for varia-

tion were: the spring buoy buoyancy, depth of water accompanied

by a proportional change in anchor line length, location of the con-

necting chain position on the surface buoy, anchor span, and weight

of the buoy connecting chain and anchor lines. Figures 2. 9- 2 through

2. 9-13 show the effect that variation. of each of these parameters

has on the mooring reactions and on cable tensions at selected points,

as well as accompanying geometry changes of the mooring. All

figures were developed using a total of 60 node points, 10 in each of

the buoy connecting cables and 20 in the anchor lines. An error of

closure was taken to be less than or equal to 0. 10. It was felt that

this coinbination represented a good compromise between necessary

accuracy and computer time expenditure. Adaption of these require-

ments ivas based on the evaluation presented in Section 2. 8. It is

notewo! thy that each of the parameters exhibits a near linear effect

over at least some portion of the selected range of variations. Fig-

ure 2. 9-9 shows that increasing the anchor span and consequently

decreasing the compliancy number of the system has the effect of

increasing all of the internal and external reactions of the system.

A mooring design for a particular site and condition would entail

establishing the proper combination of components to optimize the
I
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system in terms of the applicable gauging criteria.

Table Z 9-1, Reference Configuration Used in the Parazneter Study
of the Two-point Mooring

Dimensionless ParametersDimensions

A =09elD = 1800. 00 ft,

1. 189x = 1840. 00 ft

8 = 14000 lbs.  net!
s

L = 1. l3 lbs/ft.  submerged wt. !
a

L = 15. 70 lbs/ft.  submerged wt. !
C

= 32,Oft.
s

2. 950

5 = 0 479

Z. 10. Multi-Directional Loadinj Effects

The two-point reference znooring was analyzed with respect

to surface loads of differing magnitude and direction. The effect of

directic nal loading on the anchor reactions is illustrated by Figure

Z. 10-1.

the highly coznpliant nature of the system.

fr~portant to design is a knowledge of the systems maximum

horizon al displacernent at the surface as well as the internal reac-

tion diszribution. Spring buoys must be designed to withstand

Geometric changes produced by each of three different su.rface

loadings are shown in Figures Z. 10- Z through 2. 10-5, demonstrating
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pressures due to changes in depth that they will be subject to

Tc demonstrate the effect of hydrodynamic forces on the moor-

ing. an «xample is considered. A uniform 1 knot velocity field ex-

tending throughout the full depth of water is selected and evaluated

with respect to its influence on the reference mooring coupled to the

2. 10-6. The lighter anchor lines exhibit the most pronounced curva-

ture whi =h can most easily be seen in the plan view of the mooring.

Reaction changes instituted by the velocity field are observable in

the following table.

1 Kn it Ve1.ocity
Field Q - 30

Zero Velocity
Fie ldReactic ns

10801. 16 lbs.10552. 70 lbs.Surface .3uoy
 Vertical!

9178. 88 lbs,

7762. 83 lbs,

8244. 35 lbs.

8?44. 35 lbs.

Left Anchor

Right Anchor

TOTEM and spring buoys shown in Figure 1. 2-1. Hydrodynamic drag

coefficients were derived from Reynolds Number criteria. The coef-

ficients were derived from Reynolds Number crite ria. The coefficient

used for the buoys was 0.5. This results in a force of 925. 0 lbs. at

the surface buoy position and a force of 98. 5 lbs. at each of the sub-

surface spring buoy locations. The effective diameters of the anchor

line and buoy connecting cables were taken to be 7/8 inch and 1. 25

inches, respectively. Gable coefficients used were evaulated as 1, 6.

The mooring in its initial and displaced position is shown in Figure
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Z. 11. Discussion

.accuracy which is achievable exceeds that norma'lly required

and appears limited only by the number of cable segments utilized.

Use of a large number of segments, though probably seldom necessary,

is not prohibitive. When using a discrete cable system model, a

greate r number of segments should be incorporated in cables having

a nega.':ivc a ratio than those which are positive, if consistent

tension accuracy is to be achieved throughout the system. Hydro-

dynam: c forces on subsurface elements can be significant, and

should be accounted for, as their neglect can lead to appreciable error.

 !nce basic computer programs have been developed, the dis-

crete parameter formulation provides direct transition to dynamic

analys:.s  Doming ue z 1 971 ! .

"he use of a discrete parameter model, in conjunction with a

high speed digital computer, results in a, powerful tool for arriving

at stat:.cal solutions to complicated cable analysis probl ms. Exper-

ience has shown it to be versatile and highly efficient. Ba.sic programs

can b» written to readily accommodate analysis of different systenas,

making it a practical technique for design applications.
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