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PREFACE

This bulletin deals only with the steady-state or static analysis

of cable mooring systems and represents a portion of a much broader
investigation which includes dynamic effects.

The complete analytical study, (Dominguez 1971) extends this
static analysis technique to dynamic analysis using matrix methods.
This makes it possible to obtain an eigenvalue solution. In reduced
matrix form, the damped equations of motion are uncoupled by means
of a “inear transformation from the physical to a complex coordinate
system, permitting evaluation of either characteristic or forced

motion of cable systems.



Nomenclature

Symbols Definition

A, A constant of integration

A Reaction force

F:2) Aspect ratio

a Catenary parameter

B]. A constant of integration

B Reaction force

Bs Net spring buoy buoyancy

D Depth .

d Distance from the mean sea surface to the moorir,

s connection on the surface buoy

Cd Drag coefficient

C Compliancy number

E Total closure error

Eb Closure error at surface buoy

Em Closure error at right anchor position

F Force

Fd Hydrodynamic drag force

F . Fy’ FZ Force components in the x, y, z directions

h Vertical distance between cable support positione

h! Vertical height from the left support to the low poind
of cable

h_ Vertical height from the right cable suppert 1o (1
low peoint of cable

i Index

i, 5k, Orthogonal unit vectors

k Sarface buoy index

L. Cable length

i, | Dimensionless cable length ratio

M Moment vector

m Mass

N Horizontal coordinate interval used 1n pragTrain

CATENARY
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Definition

A concentrated load

Reaction components in the x, y, z directions
Position vector

Position vector to the centroid of a distributed lozd
Spread ratio

Length measured along a cable

Cable segment components

Tension

Tension components

Time

Velocity

Uniformly distributed load

Orthogonal coordinate

Horizontal distance from the left cable support to the
low point of the cable for positive g ratios

Horizontal distance from the left cable support tu the
low point in the cable for negative 0 ratios

Anchor span and right anchor coordinate

Horizontal distance from the right support, i i ..
point of cable

Cable span

Orthogonal coordinate

Right anchor coordinate

Orthogonal coordinate

Right anchor coordinate

Cable sag

Corrective force at surface buoy
Corrective forces at right anchor position
Positive correction value

Termination test value used in Newton-Kap: i
Horizontal surface force angle
Convergence terniuination value
3.14159265

Fluid mass density

Span to cable sap ratio; wave frequeny
ol slope

Herizontal veico oy field angle
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1. INTRODUCTION

1.1 General Introduction

The world today is faced with the growing problem of meeting
current and projected needs of an expanding world population. As a
resul:, attention is being focused upon the sea as a means of fulfilling
requirements in the future., New and imaginative effort, coupled win
increased scientific knowledge and technological capability, will be
ma.nda.tory; for intelligent and efficient utilization of the unfathomed
resources of the ocean,

Traditionally, oceanographic exploration has followed a pattern
of gathering data from ships in either single or cooperalive ventures.
Measurements taken at scattered geographic positions over long peri-
ods of time (often on the order of years) is costly and often an inade-
quate means for accurnulating information necessary to the stid.s -f
time cependent transport and circulational processes. Further explor-
ation and development of marine resources will necessitate the ccn-
struction of complex structural systems in deep water. Cruc.al t,
suck development is the need to ac-tralely predict wave condilion s
‘o

{nr in advance of their occurrence.

Regional or global systems of etrategically disperraad re nnte



sensing buoy: zould provide a means for meeting these needs. Such
systems would provide a capability for monitoring sea state and lower
atmospheric conditions. By accumulating data they would provide
information necessary for better understanding the basic phenomena
involvirg the generation of wind waves, thereby leading to improved
and reliable wave forecasting.

Oceanographical measurement from fixed positions has long beer.
desirabie, but to date only limitedly attainable. A major obstacle to
the placement of such installations has been their unreliability and
short lile. The ocean, and in particular the interfacial region, pre-
sents a harsh physical and chemical environment. Past inadequacies
are attributable to an insufficient backlog of both knowledge and exper:
ence in this environment, in relation to the behavior of materials,
instruments and structaral systems.

A long history of unsuccessful mooring attempts and the recent
profusicn of basic buoys and mooring schemes attests to the interest
and need to develop this capacity. Causes traceable to mooring
failures are diverse, ranging from component overstress to shark
iie and corrosion. Structural failures resulting from inadequate
design <2n be ascribed to a present inability to correctly predict the
exact nature and extent of the forces which a mooring system will be
required to withstand. Such forces are the result of complex static

and dynamic interaction of both buoys and their moorings with lower




atmospheric winds, ocean waves and currents.

The ability to analyze a moored object and its cable mooring beth
statically and dynamically is essential for reliable structural and
hydrodynamic design. Attempting to deal analytically with mooring
problems can be discouraging when one reflects on the long years
and substantial effort directed at evalualing hydro- and aerodynamic
forces on rigid bodies, subject to steady flow. Analysis has yet to
reach the point of exclusion of experimentation or reliance on empiri-
cally derived relations. Mooring problems involve fluid rnotion influ-
enced >y waves which have all the complexities of being non-uniform,
non-st2ady, and turbulent. Detailed kinematic description of the flow
field, involving both pressure and shear distribution on the buoy and
cables is presently not possible. Flow conditions about a cable influ-
enced by wave motion are complicated by the fact that the cable's
trailing edge during one half cycle becomes its leading edge during
the next, as the cable is accelerated back into its wake. The com-
pliant nature of the cable further complicates the picture as it con-
tributes to the relative motion by responding to variaticn in pressure
along its length.

The static and dynamic behavior of flexible cables is also com-
plex aad not totally understood. Exact attainment of the static config-
aration under all but a few specific loadings is currently not possible.

A complete solation of the mooring behavior problem must



account or fluid structure interaction resulting from both waves and
subsurface currents; structural and fluid energy dissipation, and elas-
tic deformation of the systems' components must also be considered.
In the case of gome commonly used cable materials this effect can be
apprectable and add still greater difficulty to the analysis, due to non-
linear stress-strain relationships (Wilson, 1967).

Approachee to the analysis of mooring systems have taken sev-
eral directions. Attempts at analyzing the behavior of such systems
by use o hydraulic models have been widely conducted. Experimental
studies of large scale systems are, however, not without their diffi-
culties. Facilities are normally limited in depth, necessitating the
use of either small or partial models. Results obtained from such
models tend to be of limited value. Cables which are on the order of
several inches or less, in depths often approaching several thousand
feet, present significant scaling difficulties. There appears to be a
lack of comprehensive studies aimed at establishing model criteria
required to properly evaluate the dynamical behavior of cable systems
in fluids. Analytical attempts have been based on formulating equa-
tions of motion for the system and then attempting to arrive at solu-
tion under simplifying agsumptions by various mathematical techniques.
Other approaches have been based on the development of simplified
system models and the adoption of both digital and analog computers.

Tke mooring behavior problem by its nature traverses many



areas of endeavor and engineering application. An extensive publica-
tion devoted entirely to reviewing the current status of analyzing cable
systems under hydrodynamic loading has been written (Parsons and
Casarella, 1969) to which the reader is referred for a comprehensive
overview. Discussion of the results of other investigators will be
undertaken in conjunction with either their usage or applicability to

the matzrial presented in subsequent sections of this study.

1.2. Background and Scope of Investigation

Tae use of large TOTEM spar buoys such as that shown in
Fig.u.re 1.2-1 for data acquisition by Oregon State University's Depart-
ment of Oceanography, neceasitated the development of a reliable
mooring technigue capable 6f restraining the buoy while minimizing
the vertical mooring reaction, as these buoys are limited in reserve
buoyancy.

In view of this, a study was conducted (Dominguez, et al., 1969)
to develop a mooring for installation of a TOTEM buoy in 1800 feet of
water off the coast of Oregon. As a result the two-point mooring
illustrated in Figure 1.3-1 was developed and later deployed. Its
design was based on a necessarily limited amount of analytical work
in conjunction with a structural analog to evaluate static behavior.
Reliance was placed on a 1/100 scale model of the buoy and its moor-

ing to evaluate the systemsa' response to directional waves. Static and
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dynamic evaluation by these methods were limited with respect to

depth. The static analysis was limited to two dimensions, neglect-
ing hydrodynamic forces on the subsurface mooring components.

In view of the several drawbacks presented by such approaches
to long “erm studies, it was felt that future development of such
mooring systems required a capability of easily evaluating their
behavior under a minimum number of restricting limitations. Hence
the imp=ztus for this study was provided.

The objectives of this study focus upon the development and
application of numerical methods for statically analyzing discrete
paramerer represented moorings and cable systems, under general-

ized assumed known loadings.

1.3, Two-Point Mooring System

The two-point mooring system shown in Figure 1.3-1 consists
of a set of anchors and a pair of subsurface spring buoys which
provide support to a set of anchor and buoy connecting cables. When
subject to external forces arising from either wind or current action
on the surface buoy or subsurface components, a change in the moor-
ing georaetry must occur. The mooring can be thought of as being
in a state of quasi-equilibrium dependent on cable generated forces

to maintain its position. Under the influence of any external force the
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mooring must readjust and seek out a new equilibrium position com-

patible with the applied external forces and restraints on the system,



10

2, STATIC BEHAVIOR OF CABLE SYSTEMS

2.1. Statics of a Continuous Suspended Cable

Historically, the mathematical theory of flexible cables and
chains has evolved under the assumption of total flexibility of the
membe:. This assumption results in significant analytical simplifi-
cation, as it implies that internal bending moments cannot be devel-
oped. Consequently internal shear forces cannot exist. Forces
which a cable is then capable of transmitting are tensile forces only,
and must be directed tangent to the cable at every point along its
length.

The tangency requirement will be demonstrated, and eguations
developed, by considering the equilibrium of an elemental length of
cable, following that given by Pestel and Thomson (1.969).

Consideration of the element indicated in Figure 2.1-1 shows
it to be acted upon by an external distributed load w{s) whose re-
sultant is wA s and the internal cable reactions at either end of the
element T and T + AT, Equilibrium of the element requires that
two conditions must be identically satisfied. The first may be ex-

pressec as



S+ A\s
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Figure 2.-| EQUILIBRIUM OF A CABLE ELEMENT ,
INFLUENCED BY AN EXTERNAL LOADING
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where F = Force, external to the element. Applying this condition

-T+(T+AT) +wAs = 0

which recuces to
g +w = 0 (2.1-1)
Letting 28 — 0, the following differential equation results,
(2.1-2)

=N

T = _
d8+w—0

Application is now made of the second equilibrium condition which

may be expressed as
z M0 = 0

where M = the moment produced by a force F about ahy arbitrary

peint 0. On substituation,
=0

TX-T+(r+a1) X(T+aT) +?_W X WA 8

Expansion and division of this equation by as gives,

— AT Ar _— Ar  — — _ —
rXAs +AB xT +EXAT+I‘WXW =0 (2.1-3)
Now if As — 0, then Aﬂf—- 0 and ;w_. ;, which gives
—_ AT ., dr _= _
rX(ds +w)+ds XT =0 (2.1-4)

The bracketed portion of the left hand term is zero by Eq. {(2.1-2);

hence the following differential equation is obtained
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ar _ =

— X T = 0 2.1-

ds { 5}
Since E:—-;; is everywhere tangent to the cable then the direction of T

must be also,in order to satisfy Eq. (2.1-5).
Equations (2.1-2) and (2. 1-5) are the basic differential equa-
ticns describing the internal force distribution and deflection

geometry of a suspended cable subject to a distributed loading.

2.2, Development of the Equations for Two-Dimensional

Analysis of a Suspended Cable

Use will now be made of Eqs. (2.1-2) and (2. 1-5) to develop the
basic equations for static analysis of suspended cable members under
the inflience of a distributed loading. If the distributed load is re-

stricted to lying in a vertical plane. as shown in Figure 2.2-1 . then
wis) = w(s)j (2.2-1)

where h _i, E are unit vectors in the x, y, z directions of a right

hand cable coordinate system,

r
/!
F 4

Fd

’

I”

S "'T
T T
+ y wis
Figure 2.2-1 CABLE ACTED UPON BY A VERTICAL

DISTRIBUTED LOADING
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The interral tension force at any point s is thus

T = Ti+Tj (2.2-2)

Substitutirg Eq. (2.2-2) into Eq. (2.1-2) gives

de aT:
T Lt Ltwap =0

Separating terms, one obtains

. 4T

X; Is = 0 (2.2-3)
dT

v —d-;Y+w(s) =0 (2.2-4)

Eq. {2.2-3) implies that everywhere in the cable the horizontal
component of the tension force is constant. Integrating Eq. (2.2-4)

will give

T, = -S'w(s)ds + A (2.2-5)

If the position vector r from the origin of coordinates to any point ,

located on the cable, at a distance s is expressed in rectangular

Cartesian coordinates as
T = Xi +yj

and r is gubstituted into the second of the basic differential cable

equations, then Eq. (2.1-5) gives
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dx _g_z _
ds-—+ds‘L)x(Tx1 + T j) =0
dx ay. ..
ds yE- ds 1x X = O
-7 Sy
T =T {2.2-6)
¥ x dx

Substitution of this last expression, Eg. (2.2-6) into Eq. (2.2-5) is
now made, obtaining the following expression for the cable slope at

any point,

g—i = -,—r-L S‘ w(s)ds +A1 (2.2-7)
x

From Figure 2.2-2 the following geometrical relationship can be seen

to exist:

i
%:z; - [(g;":)z-l]a (2.2-8)

Using this, Eq. (2.2-7) may now be written in the following form

% :J 1+[-?l,-‘ S.w(s)ds+AI]2

which upon separation of the variables and integration gives

ds
x = \ + A (2. 2-9)
S‘Jl+[-T—l S‘w(s)ds+A1]2 2
x
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This last equation, Eq. (2. 2-9), may in general be utilized to obtain
an expression for the deflection relationship of the cable y = y(x)
provided| that the necessary integration can be carried out. Pestel
and Thomson (1969) point out that this is normally quite difficult.
However, there are two special cases of practical importance for
which a closed solution for the deflectioln curve can readily be obtained,

These will now be considered,

Parabola
For the case when the load acting on the cable is a prescribed
function of x, then

wix) = wix)j (2. 2-10)

which will lead to the following form of Eq. (2.1-2)

aT _
T +twix) = 0 (2.2-11)

As was previously done, this can be expressed in Cartesian compo-

nents to give

de
= = o (2.2-12)
dT
T twilx) = 0 (2.2-13)

Hence

Tx = Constant (2.2-14)
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T = -S‘ wix)dx + B {2.2-15)
y 1

The tensicn force tangency requirement given by Eq. (2.2-6) may now
be used with Eq. (2.2-15) to obtain the following expression for the

slope of the cable :

%;‘f:--ll,— S.w(x)dx+Bl (2.2-16)
p 4

The deflection curve is then described by

y{x) = ,1:1-:5'[ S‘ w{x)dx ]dfc +Bx +B, (2.2-17)

If w(x} = w = constant, then Eq. (2.2-17) is easily integrated, giving

the parabolic form of the cable deflection equation.

WX
y{x) = - 3T +B.x+B (2.2-18)

The integration constants in the above equationg are evaluated by use
of known boundary values, obtained from the physical constraints

imposed oa the problem, auch as, specification of cable support
locations, maximum deflection, or cable length. An important condi-
. . L. dy _ .

tion is that at the lowest point in the cable = 0 which can be ap-

dx
plied through use of Eq. (2.2-16).
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Catenary

As pointed out, Eq. {2.2-9) may be utilized to obtain an expres-
sion describing the cable deflection curve. Consideration is now given
to the important case where w(s) = w = constant which corresponds
to a uniform cable suﬁporting its own weight. This relation may be
derived by employing a coordinate systermn located at the end of the
cable, as done by O'Brien and Francis {1964). However, in order to
facilitate development and obtain less cumbersome re-
sults, a shift in coordinate system will be introduced, locating the
new axes at the lowest point of the cable, as shown in Figure 2.2-2.
At this point, the cable slope %‘1{-{ =0, §8=0, and § =x - x, = 0.

Application of the integrated form of Eq. (2.2-7) gives A, = 0. Egqg.

(2.2-9) then gives

£ S = ( 19)
= + A 2. 2-
1+ ws, 2 2

(7}
X
which upon integration is

T
x -1 ws
_ ; ws 2. 2.20
£ - sinh T AZ { )

X

At £ =0, (=0, s =0, the constant Az = 0. Hence

w8 _ inn YE
T ginh Tx (2.2-21)

X

Integrating Eq. (2.2-7) with Al = 0, and then substituting Eq. (2.2-21)
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into the rasult, gives

.c.i_x - - “_’g. -
= sinh 2 (2.2-22)
. X
T

Making the substitution a = -wi and then integrating the above equa-
tion, one obtains

y = -a cosh -E- + A (2.2-23)

3

If the valces £ =0 and y = h

. at the transformed coordinate origin

are substituted into the above equation then A3 = h! +a. Substituting

this value of A3 into Eq. (2.2-23) gives the catenary form of the

cable deflection expression

T w(x-x
- x
y - h! = - [cosh Tx

)

Y (2.2-24)

Since this equation contains three unknown values, h!, %, and Tx

additional relations are needed in order to make use of it. These
can be obtained by evaluating Eq. (2.2~24) twice, at x =0 and at

X =x =x, tx and then subtracting the results leading to the follow-

ing expression for h, the vertical distance between cable supports.
x 2x -x

_ - _t . t
h = 2a 8inh > sinh =

(2.2-25)
To obtain an expression for the length of the catenary L in terms of

the cable span, one can integrate the following expression using Eq.

.22) for X
(2.2-22) for L
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L = * 1+ (22 g, (2. 2- 26)
0 dx et

which after integration and the use of a hyperbolic identity gives

x 2%, X

_— 3 — _.._.._._._t
L = 2a sinh 7 cash >a

(2.2-27)
If both Eq. (2.2-25) and Eq. (2.2-27) are squared and then subtracted

the following transcendental equation for the catenary parameter a

is obtained,

x
. t 1 2 2
sinh 5= ==« L" - h (2.2-28)

In order to obtain equations which can be used easgily to obtain the co-
ordinates of the lowest position of the catenary in terms of the nor-
mally known parameters 1, x, and h, Eq. (2 2-25) and Eq. (2:2-

27) may be combined to give

1

x, = a.tanh” E+x—t (2.2-29)
' L2 P

£

A relatior for the vertical coordinate h! may now be obtained by sub-
stituting Eq. (2.2-28) and Eq. (2.2-29) into Eq. (2.2-.24) and evalu-
ating the zesultat x =0, y =0, thus

x

- A ..
h! = a [cosh i 1] (2.2-.::0)

An expression for the tension at any point in the cable may now be

obtained ky combining Egs. (2.2-2) and {2. 2-6) with Eq. (2.2-22)



which describes the cable slope g—ﬁ to give

x-—x! 2%
— )] (2.2-31)

T = aw [1 + (sinh

2.3. Computer Program for Solution of Catenary Equations

Solving the equations governing the catenary geometry and inter-
nal force distribution necessitates the tedious solution of a rather
complex set of hyperbolic equations, including a transcendental equa-
tion defining the catenary parameter. In view of this, a computer
program was developed which provides a complete static solution by
solving the equations presented in Section 2.2 based on the location
of cable support positions, cable length and weight. This program,
as were all programs used in this study, was written in Fortran IV
for use with the Oregon State CDC 3300 computer facility using the
OS3 veraion 2.1 time sharing system.

Trke program incorporates a Newton-~-Raphson method for solving
the transcendental equation, Eq. (2.2-28) which is first rearranged
by transposition to obtain the form F(a) = 0.

x

T 1 2 2
smhza—za L -h =20

Obtaininy the root or the value of the catenary parameter a which
satisfies this equation is accomplished by use of the recursion rela-

tion
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F(a.l)
=a, - (2.3-1)

whe re F'(ai) denotes the derivative of F(a) with respect to a and
evaluated at a = a..
Eq. (2.3-1) is used to obtain successive approximations to the

value of it which will satisfy F(a) = 0. Successive approximations

Fa.)

of a root are carried out until the value of i“—'tal_) is less than some
i

prescribed value ¢, at which point the root satisfying the catenary

paramete: equation has been found. A flow chart illustrating the cal-
culation sequence is given in Figure 2.3-1.

Subsequent figures relating to the catenary properties were
developed using this program. Presented in Figure 2.3-2 is a dimen-
sionless plot of the catenary parameter a illustrating its dependence
on h, X, and I, for the range of configurations of interest. As this
figure shows, the parameter has a wide range of values exhibiting
very larg> changes as the span to length ratio approaches its asymp-
totic limit, As a approaches infinity, so must the cable tension.
For deep catenaries with small positive span to sag ratios, the cate-
nary parameter assumes a much narrower range of variation.

It was found that the Newton-Raphson criteria used for conver-
gence in obtaining a proved to be direct and rapid for the range of
x

% above approximately 0.35. For lower ranges initial values had

to be selected with greater care. Where initial values of a were
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Read in
Maxit, N,
Lh,x
a,€

r

Initiglize

R=D=0 O
Kount = 0

r

AR
e="Z.0

Read in now
value of a

Write a,
Kount

Write message
"Kount >Maxit"

Yes

Print
Maessage

Kount = Kowunt + 1

No

Change =

Sinh (R/a)}Q/a
_R/a Cosh (R/a ) + Q /a2

4

° a =a - Change

Figure 2,

3-1. Flow Chart of Program CATENARY
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xp=a Tanh'l(h;L) +x,/2.0

Y

hy =afcosh(xp/a)- 1.0)

I'x =aw A
IXT = X y
¥
Write
= IXT/N
! / Tension values, RATIOC and
x=y=00 ] . .
dimensionless force ratios
L
Write x,y Calculate dimensionless
1, Kount force ratios
F 3
r
I=1to ] .n increments of 1 RATIO = SAG/x
KK=1*N x=KK t
w=x g SAG =h, - CEE
= - 1 ————— - ! =
¥ hg Txlv feosh ( T LO)7
X . F )
h
Write x,y Xt
]
? No Calculate cable tension at x
points
< I>] X=X
T = aw[cosh(—; )]
Yes 1
- wxexy) write X, v,
yt=h£-Tx/w[-:m{T-1.0)] and Xy hg

Figure 2. 3-1 (continued)
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within reasonable range of the correct value, convergence to ¢, equal

to or less than 0, 000], normally took place within four or five iterations.
In crder to lend added geometric meaning to the parameters

used in defining cable properties and configurations, Figure 2. 3-3 is

presented showing the catenary shapes as a function of the cable sup-
X, x
port position h, span to length ratio T and the span to sag ratio T

Figure 2.3-4 and Figure 2. 3-5 show the cable tension dependence on

catenary zeometry and exemplify the non-linear nature of the static
X

cable analysis problem. Variation of tension with increasing T

corresponds to the effect produced by forcing the cable support posi-

tions apart.

2.4. Analysis of Cable Systems

Calhles have been used as load supporting members in such
traditionzl structures as suspension bridges, tramways, transmission
lines, etc. for some time. In recent years the application of cables
to the construction of complex suspended roof systems has increased.
As a consequence, behavioral theory and techniques for analysis of
such structures have received a good deal of attention and are well
documented (see Shore, 1969). In the case of such structural appli-
cations a3 these, support locations are known and are not a function of
the systems’ loading. Only small changes due to elastic deformation

and temp2rature occur, which can be accounted for., Loading is




31
general.y such that analysis can be carried out in a plane. For
cables having relatively flat deflection curves the simpler parabolic
form of the cable equations can be satisfactorily utilized, giving a
good ap>roximation to the exact case described by the catenary. In
this case cos ¢ = 1, where ¢ is the cable slope measured from
the horizontal (Figure 2.2-2). When ¢ .is small everywhere, a pood
approximation of cable weight being distributed uniformly in the
horizontal direction,is obtained. For cable systems which are sub-
ject to rnore complex loading (combinations of concentrated loads;
discontinuous and non~uniformly distributed loads) deflection rela-
tions cannot in general be .directly obtained by existing theory.

The equilibrium of all structures requires that the vector addi-
tion of all forces acting on it form a closed polygon. Analysis of
beams, arches, and trusses, either graphic or algebraic, can be
carried out on this basis, The procedure ig well documented in books
dealing with structural analysis and mechanics such as Michélos
and Wilson (1965). The polygon principle can be extended to cable
analysis when treated as a system acted upon by concentrated loads.

Approximate golution can be realized by use of the string poly-
gon metaod, approximating hanging cables by a series of frictionless
pin-connected, rigid but weightless segments. Loads including
cable weight are replaced by equivalent concentrated forces located

at the connecting node points. This results in a configuration which
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is statically determinate and requires no prior assumption as to its
geometric shape.

Existing cable theory can be applied to mooring systems pro-
vided the support positions are known and hydrodynamic drag forces
are either non-existent or negligible. The catenary equations would
then be applicable. However in the case of mooring applications, at
least one of the cable supports is partially free to move, making its
position a function of the systems' loading. In such a case the caten-
ary relations are not applicable. Hydrodynamic forces acting on the
cable cause it to assume a configuration that is no longer a catenary
and in general does not lie in a plare. Consequently the geometric
configuration may be three-dimensional.

This situation is exemplified by the analytical problem con-
fronted in arriving at the static configuration of the two-point moor-
ing system, under a generalized loading, illustrated in Figure 2,4-1.
There are, as yet, no adequate analytical techniques for arriving at
exact solutions to such problems. Although solutions for particular
problems have been developed, no general method of analysis is
available. Hanging cables are subject to large displacements and
the differential equations describing their equilibrium are non-linear.
This has excluded the application of methods based on linear super-
position used in structural mechanics for the analysis of complex

statical.y indeterminate structures.
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O'Brien and Francis {1964) set forth a numerical method for
the two-dimensgional analysis of cables by a process of successive
approximnations. This approach treats cable elements between con-
centrated loads as piecewise continuous catenaries, by applying the
basic catenary relations to each segment of the cable between con-
centrated load points. Later O'Brien (1967) extended this technique
to three -dimensional application and reportedly applied it to the de-
gign of deep sea moorings. Apparently motivated by O'Brien, Skop
and O'Hara (1969) formalized the string polygon technique and applied

it to three-dimensional cable arrays.

2.5. Besis of Numerical Solution Procedure

Bz sed on the concepts put forth in the original paper by Skop
and O'Hara, two numerical computer programs were developed to
attain static solution of the two-point mooring and single cable sys-
tems.

In order to make clear the principle upon which the numerical
solution procedure ias based, it will first be explained by application
to the simpler single cable.

Figure 2.5-1 shows a uniform cable, of known length L., sus-
pended Letween supports a and b whose position is presumed
known. In the absence of externally applied loadings, the cable shape

would be described by the catenary relations previously developed.
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Use of these could be made to determine the reactions A and B at
the supports. '
Suppose the cable is now subject to a distributed but arbitrary
known loading w(s). Under this influence it deforms from its initial
shape a-b to some other unknown configuration a'-b', shown dotted.
Since w(s) is assumed known, the magnitude of its resultant can be
determined by integrating the load along the cable length. As con-
stituted, there are more unknowns than available independent equa-
tions, rendering the cable statically indeterminate. Though the
magnitude of the resultant of the distributed load is determinable, its
point of application is not, as a deflection relationship for the cable is
unavailable. Since there are only three available equilibrium equa-
tiong, other relations are needed to achieve a static solution. Knowl-
edge of :he deflected shape of the cable would remove a sufficient
number of unknowns to render the problem statically determinable.
In order to surmount these difficulties, we approximate the
original distributed system by a discrete or lumped parameter one
(Figure 2.5-1), by dividing the cable into a stipulated number of seg-
ments such that the sum of their lengths equals the original cable
length. The distributed load, including the cable weight acting on
each segment, is replaced by an'equiva.lent concentrated node point
load. The unknown quantities are now: the magnitude of the reac-

tions A and B, their directions and the unknown positions of each
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of the node points,

It would appear that this new system has increased the number
of unkn>wn quantities by virtue of each interior node point position
being unknown at the outset. What has been accomplished is the
replacement of an infinite number of unknown cable positions by a
finite number of node points, each of which is accompanied by an
independent set of equilibrium equations. In the discrete case, or
polygon formulation, the support reactions as well as their directions
are unknown.

Suppose for the moment that we free the cable at point b and
select the unknown reaction B equal to its correct value. A can
readily be calculated in terms of B by equating all external forces
acting c¢n the cable in the x and y directions to zero. Alternatively
we could begin at point b and progress from connection to connection
by considering the equilibrium of each individual segment. As the
weight and external loading are applied at the node points, each
cable segment is a two force member. Consequently, the resultant
of all forces external to each segment must be colinear, equal and
opposite. Application of this elementary principle of statics allows
for the zalculation of A interms of B by successive calculation
of interaal reactions at all intervening node points.

Tais forms the basis upon which the numerical solution is

formulated. Since the value of the redundant reaction E is not
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known, a reasonable value is assumed. Then, beginning at point b,
= Fx =0 and E Fy = 0 are applied, evaluating in succession the
internal cable reactions until point a is reached and A calculated
in terms of the presumed value B. At this stage all internal reac-
tions in terms of B and the external cable loading have been evalu-
ated, Usec is now made of the colinear requirement of the segment
reactions to calculate the X,y position of each successive node
point, beginning at point a and progressing to b. If point b fails
to fall at the specified support location then the assumed value of B
is in e rror. Then a corrective procedure is instituted by the addi-
tion o force AB to B in the direction from b' to b {(Figure 2,5-2)
to improve upon the previous value. The procedure is repeated until
conve rpgence is achieved and point b falls at the prescribed cable
suppo -t location. When this occurs, a unique solution for the static
equilibrium configuration is achieved.

NP °

EQUILIBRIUM AE\J’/CLOSURE ERROR
POSITION DISTANCE

!

CALCULATED
POSITION

Figure 25-2 INTERMEDIATE CABLE POSITION DURING
NUMERICAL EQUILIBRIUM CALCULATION
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The method will be mathematically formalized in the subsequent

section.

2.6. Numerical Procedure and Equations for Sta.tica.lly

Analyzing the Two-Point Mooring

The Cartesian coordinate system and notation adopted in this
section will correspond to Figure 2.6-1. The coordinate origin is
th
placed at the left anchorage and denoted as the 0  node position.
The coordinate system will be oriented relative to the mooring such
L . th " :
that the right anchorage, defined as the m = node position, lies on

or above the x coordinate axis.

lLeft anchor node position x(0}, y(0), =z{0)

Right anchor node position x{m), y(m), z{m)

. . .th - N
Node point locations will be denoted as the i position beginning
at the left anchor and numbering consecutively to the right anchor
th

tk. . . .
or m station. The external force components acting at the i

node pcint will be denoted as
F (i), F (i), F (i) .
ey Y(1) L
.th .
The components of the resultant force at the i node are designated

to be

R (i), R (i), R (i)
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]

The length of the segment immediately preceding the ith node will
be denoted as s(i), making the first segment in the cable system
s(l). The tension force in the ith segment is‘ T{i). The position
of each of the mooring node points are then denoted by the Cartesian

coordinates
x(i), v(i), =(i)

.th .
The components of the resultant force at the i nocde are obtained

by use of the following equations
Rx(t) = Fx(l) +Rx(1 +1)
R (i)=F (i) +R (i+1]) (2.6-1
y y y )
Rz(l) = Fz(l) + th +1)
where 1 =1,2,-'+,m-1. At the last node point (i=m), the resultant
force components are given by
R (1) =R _(i)
R (i) = R (i} - (2.6-2
y( ) v )
R (1) =R (i)
.. .th . . .
The tension in the i segment is determined using

. 2 2 203
T@) = [(R_(1)) +(Ry(l)) (R (1)) (2.6-3)

Successive node point positions are then calculated by the following

-

\ .
. , _ 3
' o . * . ) | N
~ - ot - ..i »ai G* - F's .
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relatior.s
R_(i)s(i)
T(i)

x(i) = x(i-1) +

R (i)s{i)

y(i) = y{i-1) + —LT(T— (2. 6-4)

R_(i)a(i)
T(i)

z(i) = z(i-1) +

Convergence

The two-point mooring in contrast to the cable has three re-
strainirg boundary conditions, which the equilibrium configuration
must satisfy. These are the fixed left and right anchor positions,
and the vertical location of the surface buoy which must be consistent
with the displacement characteristics of the buoy, water depth, and
the downward reactions created by the mooring. However, there are
no restrictions placed on the buoy's horizontal or x-z position.

Where either a buoy or other type of floating object has a rela-
tively large displacement, and therefore will undergo only minor
changes, it is possible that the downward displacements (which are
small when compared to the systems dimensions) can be safely
neglected in analyzing the mooring. However, where vertical dis-
placement is significant, this must be accounted for in applying the

closure test at the end of each iteration.
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Convergence of the iterative procedure is achieved by succes-
sive apolication of corrective forces at the right anchor surface buoy
vasitiors. Corrcctions are proportional to error and are applied in
a direction such that the cable configuration moves to satisfy the
restraints imposed on it by the anchor positions and sarface buoy.

The closure error at the right anchor position is calculated by

Em = (xm-x(rn))z+(ym—y{m))2+(zm—z(m))z (2.6-5)

where x , vy , 2 are the coordinates of the fixed right anchor.
m I m

The surface buoy closure error is given by

_ 2
E, = ((D-d) - y(k)) (2.6-6)

where < denotes the surface buoy index. Consequently the total

closure error can be defined to be

E = E +E (2.6-7)

This equation contains the sum of the squares of the closure error

distances. Corrective anchor reaction forces are obtained by use of
A= = (x_-x(m))
x E m

A= ey - y(m) (2.6-8)

[
I}

T (5 - a(m))
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The corrective force at the buoy position is given by

_ b
= = (D -d ) - ylk) (2.6-9)

& is a positive value which is initially chosen, then selectively re-
duced uo that each successive iteration produces a successively
smaller closure error, until the value of E is less than some pre-
selected value K . An improved set of reaction values is then ob-
tained >y adding the corrective valugs to the previous set of reactions.
Interval halving was selected for the systematic reduction of &. The
procedare is flow charted in the next ssction. At each iteration the
value of the total error E is tested to see whether it is less than
that of the previous iteration. If it is, then a successful iteration
has been performed and the carrent value of § is retained until E
is foun] to be larger than that of the preceding E. At this point in
the solition, the program neglects the current set of iteration values,
% is reduced and the solution proceeds from the last stored iteration
set. A new set of values is then calculated, E 1is again tested and
either retained or further reduced accordingly.

Figure 2,6-2 is presented to illustrate the three dimensional
converzence of the procedure as the configuration progresses
towards its equilibrium position from intentionally selected, poor
initial values of both the reactions and convergence factor 6. Table
2.6-1 gives the calculated reactions and closure values at selected

iterations,
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2.7. Computer Program for Static Mooring Response

£ flow chart ghowing the calculation procedure employed,
based upon the equations presented in Section 2. 6 is presented in
Figure 2.7-1. The subroutines called from the main program will

be briefly discussed with reference to their purpose and usage.

Subroutine DEADLD

This subroutine, furnished with the weight and length of the
mooring cables, spring buoy buoyancy and the stipulated number of
node pcints in each cable, breaks down the distributed loading into
an equivalent discrete system of vertical forces. Interior node
forces account for the weight of a full segment, where those at the
anchor ends equal 1.5 that of an interior node to account for the total

cable weight.

Sabroutine DISPLACE

Sabroutine DISPLACE provides for vertical displacement of
the buoy or other object located at the surface termination point of
the mooring. This routine is written for a specific object geometry,
such thit vertical mooring reactions on it can be correlated with con-
sequential changes in its displacement. The subroutine is fitted into

the basic iteration procedure for calculating the equilibrium position
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( START

CALL DATE,TIM:%

{

TRIAL =0

3

Read in physical parameters
of problem, external loa
ing, velocity field, ini-

tial reaction values,
8, and allowable
closture value X,

¥

Compute €, A and test
feasibility of input preblem

: 4

Print head ng and input values

Message _’®

CAILL Subprogram DEADLD

r
I[TRIAL =ITRIAL + 1

3

Calcul: te surface loads:

RAD =8 /57.295779
F,(k)=F (k)+FSBUOY * Cos(RAD)

F (k) =F (k)4 FSBUOY * Sin(RAD)

4

CALL Sutprogram DISPLACE

!

CALL Subprogram HYDROLD

A

CALL Subprogram
CHANGE

A

Print out
Results

E < zllowable
Error

Calculate closure errors
dE
Em, Eb an

Calculate node point coordinates:
x(i), y(i), z{i) fori=1tom

@.._

Print: Error
message and i

Kount = 0

Figure ., 7-1.

Flow Chart of Program

STATIC RESPONSE

Calculate: R (i), R (i),R (i}
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‘apd T(ijfori=1tom
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v Figure 2.7-1. (continued)
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with the additional constraint that vertical displacement be compatible

with the vertical reaction on the object.

Subsroutine HYDRQLD

This subroutine calculates the hydrodynamic drag on all cable
elemente produced by subsurface currents, The program is written
to account for any number of horizontal velocity fields of arbitrary
magnitude, depth and direction. Hydrodynamic forces are evaluated
by meanu of the drag equation applied to a cylindrical cable element.
More complex loading functions are possible and can be easily incor-
porated in the program if desired. Required inputs to the subpro-
grams are the velocity field specification, the physical and hydro-
dynamic properties of each of the component cables of the mooring.
Subsurface drag on the spring buoys is accounted for through use of
subprogram CHANGE.

The projected length of each of the cable elements, perpendicu-

lar to the velocity field v, is obtained by
- 1
2. - 2, 2
=20 = (s7(1) - (si) - 7)) (2.7-1)

which, waen expanded gives
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s(i) vx + s(i)zvz _
w1 )]

v

sP@E) = [(s(i)ﬁ +s(i) “ + s(i)j) - ( (2.7-2)

2
y
Asg shcewn in Figure 2.7-2 sp(i) is the component length of s(i} per-

pendicular to the velocity field

+y \

+z i l'I" / s{i)
v

sti \
Y] \

Figure 2. 7-2_ Cable Element Oriented in a Velocity Field

The total hydrodynamic force Fd(i) acting on the ith cable element

is calculated by means of

Fd(i):%pcdd sP(i)| v |v (2.7-3)
where p = mass density of the fluid
Cd = drag coefficient
d = cable diameter

Fd(i) is reduced to component form by means of

Fdx(i)

Fd(i) cos ¢
(2.7-4)

Fd_(i) = Fd(i) sin ¢
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The total component force is then subdivided and distributed equally

to each adjacent node.

__S_tlb routine CHANGE

This subroutine allows for multiple calculation of several suc-
cessive mooring configurations with different loadings. It also pro-
vides the means for changing one or more parameters of the problem.
This provides for improved economical solutions. For example,
in successively changing the external forces applied to the system,
the previous reaction values etc. are retained and used as initial
guesses to the next problem. The program also provides the capa-
bility for changing the structural or hydrodynamic characteristics
of given elements of a mooring after the application of subroutine
DEADLD. This provides the means for altering the basic system tc

a more intricate or totally new one.

2.8. Ewvaluation of the Numerical Method

Although Skop and QO'Hara indicated that increased accuracy
would Le achieved with the usage of a larger number of cable seg-
ments, no indication as to the accuracy of the method was presented.
The question of errors of unknown extent, due to the inexact treat-
ment o the cable weight, was raised by QO'Brien but left unanswered

relative to the string polygon formulation analysis procedure
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proposed by Michalos and Birnstiel (1962).

Ir. order to ascertain the accuracy to be expected from a dis-
crete parameter formulation and to provide guidance in selecting
the number of cable segments necessary, two criteria were set up.

Program CABLE was developed for statically analyzing a
single cable, utilizing the same numerical method adopted for the
two-point mooring analysis. Solutions were obtained and compared
to those of the continuum case provided by program CATENARY.
Three cable geometries of equal length and weight but differing in

support positions were investigated.

x
Case -t —k-l-
L X
t
1 . 80 0
{1 .60 0.832
I .40 2.180

Solutions to each of the three cases were obtained with a vary-
ing numbder of cable segments. In each case K was taken as 0. 0l.
Compar.son of the relative tenasion for each of the three cases as a
function of the number of segments is shown in Figure 2.8-1. In
order to give added quantitative interpretation to these resulte, the
same data is presented in Figure 2.8-2 plotted as percent deviation
from the exact solution. It is of interest that in Case II the tension

values at the lower or left reaction are nearly exact for as few as



SNOILNTI0S 3TE¥D WNANNILNOD 8 31343810 3IHL JO NOSI¥v4WOD

SININOD3IS 3T78vI 40 YIANAN

I-g 2 aunbiy

001 0% oL 0z o3 ¥ < v £
! T ] T T T N I B T T ]
[ '\ L] 1
£ 1 385V .
]
/ . .
- —C o o] o //: > o o o o o —
W81 11 38YD ///
A9
11 ISV It3AS¥D | 3SYD NOILNT0S 10¥X3
¥/
— ) D \\\ ' e
3 N 1 \ et
-
1 2 \\ - \\ .\
F—a -] a a o7 7 a -] -
Wby @ 43 3SVYD / \ ® e
L . \\ __.‘ e -
—_— o [a] . \\ .\
B O ] 7 0 o —
sNb1y 1 3ASYD \ o
| ' o -
T
/ 0
. . . /
ol .
— Wy 1 3Svd ® ° ~
L ]
L ]
| . ]

gl

02

ot

o}

05

Q9

0L

o8

086

001

QI

o1

51¥0ddnNs LY NQISN3L 378v2 3AILVI3Y



SOLUTION

55

100.
00 - T T TTTTTT T T T 1T T
50.00 |_ -~ .
N '\. ]
* CASE Il LEFT
N . -
10.00 |_ /)\ | _
— a\ ® -
[ CASE | X -
— LEFT & * —
500 RigWT ;\\. ®  CASE NI RIGHT —
. o o —_—
A
o \o °
.00 | ]
— y -
— o} M ]
L~ CASE Il LEFT . 9\ —
\ % .
=)
 _ [ J —
Q
0.10 | \ g —
- CASE I RIGHT ©° 7]
0-05 f— ——
_ O\ _
=]
0.0l RN [ I|Nl |
5 3 45 10 20 30 50 (00
NUMBER OF CABLE SEGMENTS
Figure 2.8-2 PERCENT DEVIATION OF DISCRETE

SOLUTION FROM EXACT SOLUTION



56

IN KiPS

FORCE

LEGEND

A — VERTICAL REACTION ON

B — ANCHOR  REACTIONS

SURFACE

8uoY

C — TENSION AT UPPER END OF ANCHOR LINE

D— "TENSION AT SPRING BUOY

CONNECTING CABLE

END OF

T 17 T 1T T TTT [ | |
L — A —
(v e, (y— ) — y— L&) O
- —— O_,————O_o A O —
O G G o o o
w/o"o_———'o——_c °
- ‘,O/ —
o
[ | [ l 1 |
o 20 30 40 50 70 100 200 300 400 600
TOTAL NUMBER OF SEGMENTS
Figure 2 B-3 TWO — POINT MOORING REACTIONS VS NUMBER

CABLE SEGMENTS



57
three segments, whereas in Case III the tension values at the left
reaction are the most divergent of the cases considered. The right
reaction values of Case III also exhibit this same behavior but to a
lesser degree.

1 order to view the combined effect that the number of seg-
ments 1n a connected array of cables has, a two-point mooring con-
figuration {Table 2. 9-1) was varied using an equal number of seg-
ments .n each of the component cables, and then compared to itself.
A quas:-exact solution might be considered as that case where vari-
ation irn the results is non-discernible. A minimum number of 12
segments to a maximum of 400 were used. The effect of this varia-
tion on the cable tension at selected points and on the moorings'

reactions is shown in Figure 2, 8-3.

2.9. Farameter Investigation

Fecause infinite possibilities exist for component combinations
and herce mooring configurations, a systematic method of describing
a particular system is desirable. In discussing the mooring, all
configurations will be referenced to their static equilibrium position
in the zbsence of externally applied loads. To provide descriptive
aid, the following dimensionless parameters are introduced and

illustrzted in Figure 2.9-1. The aspect ratio is defined by
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A = — 8 (2.9-1)

The ra:io of the anchor line length to that of the buoy connecting cable

will be defined as

La
L = -]:—-— (2- 9'2)

The compliancy number, which is a quantifier of the yielding capacity

of the rmooring has a minimum value of 1, and is defined by

L +L
< (2.9-3)

- a
“ J 2 jEm z
(D-d )" + (=)

The spread ratio defined as the horizontal distance between spring

buoy pcsitions divided by the anchor sgpan, is

2x
§ = —t (2.9-4)

In order to isolate and determine the relative effect that the
basgic components of the two-point mooring play in its static behavior,
a pararaeter study based on the.independent variation of selected
components waa undertaken. Use of the numerical computer pro-
gram was made to perform the necessary calculations.

Due to the infinite combination of components it was impractical
to investigate a very wide range of possible configurations. Conse-

quently a standard reference configuration similar to the deployed
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A = 0.650
C = 1.524
L= 1083
$=0.399

1.533
i.11e ALL CONFIGURATIONS
9.80 PLOTTED UNDISTORTED

1] ]

= 0.145
A =020
C=1.058
L=2579
$ =0.261
/AL\._W"‘
Figure 29 - | COMPARISON OF DIMENSIONLESS PARAMETERS

WITH  MOORING GEOMETRY



prototype systermn was adopted and a parametric study based on varia-
tion about this configuration was conducted. The reference configu-
ration & given in Table 2, 9~1. The parameters selected for varia-
tion were: the spring buoy buoyancy, depth of water accompanied

by a proportional change in anchor line length, location of the con-
necting chain position on the surface buoy, anchor epan, and weight
of the tuoy connecting chain and anchor lines. Figures 2. 9-2 through
Z.9-13 show the effect that variation of each of these parameters

has on the mooring reactions and on cable tensions at selected points,
as well as accompanying geometry changes of the mooring. All
figures were developed using a total of 60 node points, 10 in each of
the buoy connecting cables and 20 in the anchor lines. An error of
closure was taken to be less than or equal to 0. 10. It was felt that
this combination represented a good compromise between necessary
accuracy and computer time expenditure. Adaption of these require-
ments was based on the evaluation presented in Section 2.8, It is
noteworthy that each of the parameters exhibits a near linear effect
over at least some portion of the selected range of variations. Fig-
ure 2. 9-9 shows that increasing the anchor span and consequently
decreasing the compliancy number of the system has the effect of
increasing all of the internal and external reactions of the asystem.

A mooring design for a particular tite and condition would entail

establithing the proper combination of components to optimize the
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system in terms of the applicable gauging criteria.

Table 2 9-1. Reference Configuration Used in the Parameter Study
of the Two-point Mooring

Dimensions Dimensionless Parameters

D = 1800.00 ft. A = 0.961
x = 1840.00 ft. C = 1.189

m
BS = 14000 lbs. (net) L = 2.950
L = 1.13 lbs/ ft. (submerged wt. ) $ = 0.479
L_=1570 lbs/ft. (submerged wt. )
d =32 0 ft.

8

2.10. Multi-Directional Loading Effects

The two-point reference mooring was analyzed with respect
to surfzce loads of differing magnitude and direction. The effect of
directicnal loading on the anchor reactions is illustrated by Figure
2.10-1.

Geometric changes produced by each of three different surface
loadings are shown in Figures 2. 10-2 through 2.10-5, demonstrating
the higkly compliant nature of the system.

Iraportant to design is a knowledge of the systems maximum
horizon:al displacement at the surface as well as the internal reac-

tion distribution. Spring buoys must be designed to withstand
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pressures due to changes in depth that they will be subject to

Tc¢ demonstrate the effect of hydrodynamic forces on the moor-
ing. an example is considered. A uniform 1l knot velocity field ex-
tending throughout the full depth of water is selected and evaluated
with respect to its influence on the reference mooring coupled to the
TOTEM and spring buoys shown in Figure 1. 2-1. Hydrodynamic drag
coefficients were derived from Reynolde Number criteria. The coef-
ficients were derived from Reynolds Number criteria. The coefficient
used for the buoys was 0.5, This results in a force of 325.0 lbs. at
the surface buoy position and a force of 98.5 lbs. at each of the sub-
surface spring buoy locations. The effective diameters of the anchor
line and buoy connecting cables were taken to be 7/8 inch and 1. 25
inches, respectively. Cable coefficients used were evaulated as 1.6.
The mooring in its initial and displaced position is shown in Figure
2.10-6. The lighter anchor lines exhibit the most pronounced curva-
ture which can most easily be seen in the plan view of the mooring.
Reaction changes instituted by the velocity field are observable in

the following table,

Zero Velocity 1 Keaot Velqcigy
Reacticns Field Fleldw =30
Surface 3Buoy 10552. 70 lbs. 10801. 16 lbs.
{Vertical)
Left Anchor 8244, 35 1bs. 9178. 88 lbs.

Right Anchor 8244. 35 lbs. 7762. 83 lbs.
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2.11, Discussion

Accuracy which is achievable exceeds that normally required
and apoears limited only by the number of cable segments utilized.
Use of a large number of segments, though probably seldom necessary,
is not drohibitive. When using a discrete cable system model, a
greater number of segments should be incorporated in cables having
a negative ¢ ratio thé.n those which are positive, if consistent
tension accuracy is to be achieved throughout the system. Hydro-
dynam.c forces on subsurface elements can be significant, and
should be accounted for, as their neglect can lead to appreciable error,

Once basic computer programs have been developed, the dis-
crete parameter formulation provides direct transition to dynamic
analys:s (Dominguez 1971}.

""he use of a discrete parameter model, in conjunction with a
high speed digital computer, results in a powerful tool for arriving
at statical solutions to complicated cable analysis problems, Exper-
ience has shown it to be versatile and highly efficient. Basic programs
can be written to readily accommeodate analysis of diffcrent systems,

making it a practical technique for design applications.
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